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Abstract. We review the dynamics of supercooled liquids approaching the liquid—glass transition,
starting with the conventional generalized hydrodynamics formulation. Empirical models for the
memory function are discussed, as are empirical models for the self-energy function for phonons in
crystals. Two examples of microscopic analyses based on non-linear interactions are then described,
the anharmonic lattice dynamics model for structural phase transitions, and Kawasaki's mode—
mode-coupling approach for critical dynamics. We then review the mode-coupling theory of the
liquid—glass transition, emphasizing its relation to generalized hydrodynamics with the memory
function derived from a microscopic theory of non-linear interactions. We discuss the major
predictions of this theory, particularly the asymptotic expansion results, which provide specific
formulae for analysing experimental data.

1. Introduction

Although the liquid—glass transition resembles a second-order phase transition, with the liquid
transforming continuously into an amorphous solid with no latent heat, it exhibits no diverging
correlation length, symmetry change, or obvious order parameter. It is therefore generally
not considered as a conventional thermodynamic phase transition and is better understood as
a dynamical phenomenon, an ergodic—non-ergodic transformation related to a singularity in
the underlying dynamics. The challenge has been to find a theoretical framework capable of
predicting such a transformation and of simultaneously providing a detailed description of the
relaxation dynamics of liquids and its evolution with decreasing temperature.

In 1984, Bengtzelius, &ze and Sjlander [1] and Leutheusser [2] showed that a particular
version of a mode-coupling theory of liquids could lead to a dynamical singularity with
characteristics resembling those of the liquid—glass transition. Subsequent analysis of this
theory (now usually called MCT) by @ze and Sjgren and co-workers led to several detailed
predictions for the dynamics of supercooled liquids which have stimulated much of the recent
research in the glass transition field. One notable characteristic of the new approach is an
extension of interest from the very slow structural relaxation close to the calorimetric glass
transition temperaturgs, to include higher frequencies and higher temperatures, bringing into
play a number of new experimental approaches. In his talk given as part of the Workshop to
which this Special Issue is devoted, WolfgangtZe reviewed some of the recent experiments
that have provided crucial tests of MCT.

In this article I will present an introduction to MCT from an experimentalist's point of
view, with no claim to completeness or mathematical rigour. The goal will be to consider
MCT in the context of some earlier ideas, and then to describe how MCT leads to some of its
specific predictions. Detailed discussions of the theory can be found by the interested reader
in, e.g., references [3] and [4].
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1.1. The relaxation function

The shear viscosity, of liquids capable of being supercooled without crystallizing increases
from ~10-2 P at temperatures well above the melting temperafyfe to 10 P at the
calorimetric glass transition temperatdig Maxwell's theory of viscoelasticity predicted that
the characteristia-relaxation timer, required for the local structure to relax to equilibrium
after sudden application of a shear strain would increasenwiéisz, = 1,/ G, WhereG, is
the high-frequency shear modulus. Many experimental studies with stress relaxation, dielectric
susceptibility, ultrasonics, and other techniques have verified the predicted rapid increase of
7, With decreasingl’. However, in place of the single-exponential relaxation assumed by
Maxwell, thea-process relaxation functia#(¢) (also called a correlation function) is generally
found to be better described by a stretched-exponential (Kohlrausch) function.

As experimental technigues evolved and measurements were extended to shorter times
(or higher frequencies), it was found that there is also some fast relaxation preceding the onset
of the finala-relaxation. These observations suggest that the relaxation function, normalized
to ¢ (0) = 1, might be represented approximately by

P(t) = (L— fgt) + fexp[—(t/t)"] 1)

where f is the level at which the alpha relaxation begins. A schematic versi@n(9fis
shown in figure 1 where, on a linear timescale, only the sterglaxation is visible, while on
a logarithmic timescale the fast relaxation can also be seen.

With decreasing’, the slow relaxation moves to longer times, eventually ‘freezing in’
with the result that the plateau around region B in figure 1 effectively extends to infinity,

0
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Figure 1. A schematic plot ofp, () versus logr) for a moderately supercooled liquid; (A) the
long-timea-relaxation region; (C) the short-time (microscopic) region; (B) the intermediate region
exhibiting two-step relaxation. Inset: on a linear timescale, only the dim@laxation region is
visible.



The liquid—glass transition A97

resulting in elastic scattering of neutrons or light. With further decreagdighoring quantum
fluctuations), the amplitude of the fast relaxatidn— f) decreases, so that of the frozen-in
component has to increasg:— 1 as7 — 0.

The relaxation functionp(¢) represented in figure 1 or its Fourier transfo§tw)
(whose real part is the power spectrum) has been investigated with many experimental
techniques. Frequently, experimental data have been analysed with equation (1) with the
fast-relaxation component(z) represented by some convenient phenomenological function
such as exponential relaxation. In the simplest ‘minimal mogg¥) is attributed entirely
to vibrational dynamics. It is extracted from low-temperature spectra where relaxation is
presumably frozen out, and is assumed to be independent of temperature. While this minimal
model ofx-relaxation plus vibration does not generally provide accurate fits of experimental
data [5], it is worth noting that such models do qualitatively predict two principal features of
the dynamics as reflected in the susceptibility spegti@). If the fast relaxatiorg () decays
after a timer; and is followed by thex-relaxation, there will generally be a susceptibility
minimum. AtlowT, when thex-decay has moved to extremely long times with the result that
the fast decay is followed by an extended plateau before the onsetwotibeay, the spectrum
will be flat (white) for a range of frequencies belaw = 1/z, and x”(w) in this region
will be proportional tow. The resultant downward bending of the susceptibility spectrum at
wy Will produce a ‘knee’ at low temperatures. The susceptibility minimum and the knee are
therefore very general predictions of any two-step decay model. The challenge to theory is
that of correctly predicting their shape and temperature dependence.

1.2. Equations of motion: liquids

In simple liquids, classical hydrodynamics describes the density fluctuadjioms:) by
an equation of motion for the Fourier componemig) or for ¢,(¢), the normalized
autocorrelation function af, (¢):

bq (1) = (pg () (D)) /(lpg|) 2
as

bg (1) + Vg (1) + )y (1) = 0 ©)

wherew, = cq, c is the adiabatic speed of sound, afdx ¢? is the sound attenuation coeff-
icient. Temperature (entropy) fluctuations, which couple to the density via thermal expansion,
are ignored here for the sake of simplicity. From equation (3) the density-fluctuation spectrum
I, (w) can be computed using either

Io X//

[ (w) = - () 4)

which is the low-frequency version of the fluctuation-dissipation theorem, or else, equivalently,
with the Wiener—Khintchine theorem

I
I(@) = ZRelp(s)] (5)
whereg (s) is the Laplace transform @f(z). From equation (3) we find
I@) = g (6)

(@2 — 0?)2 + (0y,)?

which, for y, <« w,, is the conventional Brillouin doublet consisting of peaksias,
with half-width y,/2. For liquids possessing relaxation dynamics, equation (3) can be
generalized by replacing the damping constagntwith a frequency-dependent damping
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functionT', (w) = y, +m,(w). Mountain [6] first used this procedure with the relaxing degree
of freedom responsible fow, (w) represented by the Maxwell-Debye single-exponential
relaxation form

() =y, +itA2/(1—ioT) (7)

with which the spectrum

_ 2 17 mg(w)
I(@) = Io(wj/m) [02 — w2 + om ()]? + [w{y, + m](®)}]? ®)
becomes
I A2/(1 +0272)]2
Ie) = ol * 2 /0 T ) ©

[02 — 0? + 02A272/(1 + 0?1?)]2 + [0y, + 0T?AZ /(1 +0?72)]?

Equation (9) predicts that when,r > 1, the spectrum consists of a triplet: the two
Brillouin components plus a new quasielastic feature, the ‘Mountain peak’, whichasphak
of the density correlator in the hydrodynamic regime. Equation (3) can be further generalized
by replacing the frequency-dependent paiff @b) with a more elaborate function (such as the
Kohlrausch or Cole-Davidson function) and replacingby a general frequenc®,. Then
equation (3) becomes

g (1) + Q2 (1) + fo di’ M, (r — )¢, (t') = 0. (10)

Equation (10) has frequently been used as the starting point for the analysis of experimental
data, with the memory functial,, (r) modelled with various parametrized empirical functions.
While such generalized hydrodynamics approaches can often provide excellent fits to
experimental data, they produce no insight into the physical processes responsible for the form
and the strong temperature dependence of the dynamics. What is missing in these approaches
is a theory ofM, (¢).

1.3. Equations of motion: solids

In the conventional harmonic theory of lattice dynamics, the potential energy is initially
truncated, retaining only terms quadratic in the atomic displacements. The resulting equations
of motion can be diagonalized, yielding the lattice vibration modes, each with wavevector
g and vibrational frequenc2;. (In the following, the quantitieg will not be explicitly
represented as vectors.) Each mode can be characterized by a Green’s function or phonon
propagator which, in this harmonic approximation, is
o0/ BF
%@@=ngz (11)
This *bare’ harmonic Green’s function can be modified to include anharmonic interactions
by computing, via perturbation theory, the complex self-energy fun&ian ) with which
the phonon propagator becomes

Ga. w) = 2w/ Bh
T T 120,50, @)

The self-energye (¢, ) produces damping through its imaginary part and a frequency shift
through its real part.
Axe et al[7] introduced a phenomenological self-energy function

Y(g, w) = —iws?/(y —iw)

12)
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to explain the central-peak phenomenon, a narrow quasielastic feature appearing in the neutron
and light scattering spectra of crystals undergoing structural phase transitions. This is an exact
analogue of Mountain’s approach for liquids described above. Winterling [8] first used this
relaxing self-energy approach for glasses in order to explain the excess low-frequency light
scattering intensity observed in the Raman spectrum of vitreous silica. He used the same
empirical memory function as was used by Asteal, combined with a sum over modes
often employed for amorphous solids because their normal modes are not spatially periodic.
Winterling wrote

1 (w)

1
m O<X‘I:Cb(q);”n[D(f],60)] (13)

whereC,(g) is an optical coupling constant, and
D(q, ) = {0 — w(g)[L —igwr/(1 —iwD)]} . (14)

Winterling’s approach has been elaborated in a series of papers by Sokolov and co-workers
[9] with the relaxing part ofD (g, w) taken as the Debye function (as in equation (14)) with
the amplitude and relaxation time treated as free fitting parameters. Here, as for supercooled
liquids, good fits to experimental data can be obtained, and the approach is a promising way
to view the liquid—glass transition from the glass side.

2. Non-linear effects

Equations (10) and (12) can be shown to be formally exact, with all the unknown physics
hidden in the memory kernélf, (¢) or the phonon self-energ¥ (¢, w). While data fitting

can be carried out using empirical fitting functions, the real challenge is to find a method for
deriving these functions rather than simply guessing at their form. In this section we recall
briefly two examples from the field of critical phenomena that suggest a more fundamental
way to proceed, based on treatments of non-linear interactions.

2.1. Structural phase transitions

The first example is that of second-order structural phase transitions in which a crystal
spontaneously destabilizes on cooling through a critical temperdigurand transforms
continuously to a new lower-symmetry structure. Such transitions are characterized by a ‘soft
mode’, a lattice vibration whose frequency decreases with decreasing temperature, reaching
Q =0atT = Tc. Since a necessary condition for the stability of crystals is ﬂgab 0
for all vibrational modes, the soft mode can be considered as the origin of the instability that
drives the displacive phase transition.
The phonon self-energy functidiXq, ) of equation (12) can be calculated approximately
via anharmonic lattice dynamics [10]. As shown schematically in figure 2(a), cubic anharmon-
icity causes the phonanto decay into two new phonong, andg,, which produces damping
or a finite phonon lifetime. The same interaction in second order, as shown in figure 2(b),
is the leading contribution to the self-energy. The summation of such diagrams leads to an
expressionfoE (¢, w) fromwhich the temperature-dependent phonon properties can be found.
Such calculations require as input only the equilibrium structure and the interatomic potentials.
The application of this anharmonic phonon theory technique to displacive phase transitions
begins with the observation that for the crystal structure that is stable at high temperature, the
harmonic solutions may show that, for some m(ﬂ§,< 0; the high-temperature structure
would therefore be unstable & = 0. However, since the anharmonic contributions cause
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(a) 9z

1r

(b)

)

Figure 2. Anharmonic phonon interaction effects. (a) Lowest-order cubic anharmonic decay of a
phonong into two phonong;; andgs. (b) The leading contribution to the self-energyg, ») of
the phonony with intermediate two-phonon statgs ¢».

(g, w) to increase with increasin@, the renormalized resonance frequency (i.e. dhe

for which the denominator in equation (12) vanishes) may be positive at high temperatures.
ThusT¢ corresponds to the temperature at Wf‘ﬂljﬁ+ 2Re[2, % (g, w)] decreases to 0 with
decreasing’, from which the soft-mode behaviour follows.

Calculation of the full self-energy function is impossible since it requires summing over
infinitely many diagrams. However, the leading-order self-energy diagram of figure 2(b) can
already approximate the full solution if the initial mogland the two intermediate-state modes
¢1 andg; are treated self-consistently [11]. So the dynamical process underlying structural
phase transitions can be understood as anharmonic phonon interactions which renormalize
not only the ‘primary’ phonory, but all phonons self-consistently. This, in very simplified
form, is the anharmonic lattice dynamics explanation of structural phase transitions. While this
formulation does not provide accurate quantitative predictions for the temperature dependence
of the soft-mode frequency, it does capture the origin of the instability and resulting phase
transition. Note that in this approach there is no ‘built-in’ anomaly. Without the anharmonic
terms the vibrational modes would remain purely harmonic with theit O frequencies, and
exhibit no temperature dependence.

2.2. The liquid—vapour critical point

The second example that we consider is Kawasaki's mode—mode-coupling theory for the
liquid—vapour critical point. Liquids, lacking atomic equilibrium positions and the regular
spatial structure of crystals, cannot be described by the theory of lattice vibrations (although

a related approach called instantaneous normal-mode analysis has been pursued by some
authors). Liquid dynamics is usually formulated in terms of kinetic equations which include
some basic assumptions such as the separation of fast and slow variables. A general theory of
liquid dynamics, due to Mori and Zwanzig, expresses the equation of motion of a dynamical
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variableA(r) as a generalized Langevin equation:

dr

The quantityQ and the function (¢r) and F(¢) are designated as the frequency, memory
function, and random force, respectively, and are formally determined exactly by the Liouville
operator. (For a description of the Zwanzig—Mori formalism, see e.g., [12].) The memory
function K (¢) is proportional to{F(t) F*(0)), the correlation function of the random force.
Equation (15) can be extended to a set of variabdgs 4., ..., A,); A andF () then become
column vectors while&2 and K (t) become matrices. Equation (15) simplifies if all the slow
variables are included i (r), while the random force#'(¢), which include all of the fast
variables, have correlation functions which decay very rapidly suchkk@t= 27y 5(¢).

Kawasaki introduced a crucial extension of the Zwanzig—Mori formalism for systems near
a critical point [13]. Close to a critical point, fluctuations become very large, and non-linear
interactions can become important. Fixman [14] had first considered how such non-linear
interactions would modify sound waves, entropy fluctuations, concentration fluctuations, and
transverse velocity modes ne&r. Kawasaki constructed a formal theory of these non-linear
effects by extending the set of slow variabkego include productsi; A; as additional slow
variables. He then separated the ordinary single variabl¢s and the product variables
Ay (1) = As14A,2 to obtain

da _ iIQA(t) —/ dr K(0)A(t — 1) + F(1). (15)
0

dA . .
dqt(t) =(Q; —T)A;(1) +(IQy —Ty)Ay(@). (16)
In order to calculate correlation functions of thg(r)
¢y (1) = (Ag(1)A(0)) (17)

the product variables must be eliminated. This was done formally via the Mori—Zwanzig
approach which produces four-point correlation functions. Kawasaki factorized these four-
point functions into products of two-point correlation functions (the factorization approx-
imation) and found the following equation of motion &y ():

d . !
d);t(t) =iQ,p,(t) +/(; dt’ K, (1), (t — 1) (18)
where the memory functioR, (¢) is given by
Ky(t) = V(q. q1. 42)q, 1)y, (1) (19)

91,92
The power of this approach is that the coupling consté@ntsequation (19) can be calculated
with the projection operator formalism. Thus, a set of closed equations are found, permitting
quantitative evaluation of the effects due to the non-linear interactions.

From these equations, Kawasaki evaluated the contributions of diagrams beginning with
ones like that of figure 2(b). The results provided quantitative predictions for various dynamical
properties near the critical point that were extensively tested and often found to provide
excellent agreement with experimental measurements. A striking result of Kawasaki’s analysis
was the prediction of critical anomalies in transport coefficients, a result not anticipated in
earlier theories of critical phenomena. These anomalies occur when a transport mode, e.g. a
thermal diffusion mode, is considered as the primary mgde the non-linear dynamical
equations, and one of the two modes in the intermediate two-mode state is the order-parameter
mode, e.g. a density-fluctuation mode for the liquid—vapour critical point.

Note that these transport anomalies are secondary consequences of the growing
fluctuations in the order parameter Bspproached. For the liquid—vapour critical point,
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for example, the amplitude of the density fluctuatienés) diverges ag" — T¢. The new
transport anomalies predicted by Kawasaki's mode—mode-coupling approach are due to the
non-linear effects of these growing fluctuations and of the static susceptibilities, which are
built into the calculations from the outset.

3. Mode-coupling theory of the liquid—glass transition

3.1. The MCT equations and their solutions

MCT begins with the equation of motion (10) for the normalized density correlation function
¢,4(t) which can be derived from the Zwanzig—Mori formalism [3]:

g (1) + Q2 (1) + /0 di’ My(t — ')y (t') = O (20)

where the memory kerne¥/, (¢), the correlation function of the fluctuating fordg (z), is

then separated into a ‘fast’ (regular) compongy#i(r) and a time-dependent paﬁgmq(t).

(The frequency2? = ¢%v?/S, is the normalized second momentsiy, »), v is the thermal
velocity, andS, denotes the static structure factor.) Equation (20) then becomes

g () + gy (1) + Q2 (1) + Q2 /0 mg(t — '), (') dt’ = 0. (21)

Since the fluctuating force occurs primarily between pairs of particles, the dominant
contribution toF, (¢), the Fourier transform of (r12) 8o (r1, 1) o (r2, t), can be approximated

as a sum of density-fluctuation pairg1(t)p,2(t) with g1 + g = ¢g. With Kawasaki’s
factorization approximation applied to the resulting four-point correlators, one obtains for
the leading-order contribution 0, (¢)

1 d3q; &®

my (1) = -//ql—ﬁqz V(4. 41, G2)q, ()b, (1)3(q + q1 + q2). (22)
2 (2m)

The vertices (or coupling constant®)q, g1, g2) are completely determined by the static

structure factors, via

V(q’ q1, q2) = (n/q4)Sq Sqlsqz[gj * Eilcfh + Ej * échz]z' (23)

(C, is the direct correlation function, relatedSpby S, = 1/[1 —nC,], andn is the density.)

Note that equation (23) for the coupling constamt&ontains only the static structure
factors and not the intermolecular potentials. This is a crucial simplification since for some
potentials (e.g. hard spheres) the potential is singular, but the structure factors are nevertheless
well behaved. The origin of this simplification lies in treating the fluctuating force not as the
gradient of the intermolecular potential (which may be undefined), but instead, via Newton’s
equation, as the time derivative of the current. One then finds, with the use of Yvon’s theorem,
that projecting the random force onto pairs of density-fluctuation modes yields equations (22)
and (23) [3].

Equations (21), (22), and (23) constitute the basic (or idealized) version of MCT, given
as a closed set of equations. If the intermolecular potential is known, the structure factors can
be computed with well-established approximation methods (e.g. the Percus—Yevick equation)
and used to evaluate the vertidégg, g1, g2). The equations are then solved self-consistently
for a discrete set of wavevectors (typically 100 to 400).

Before discussing MCT further, we want to emphasize two essential aspects of these
equations. First, equation (20) is identical to the generalized hydrodynamics equation (8).
However, rather than substituting an empirical function with adjustable parameterg(#or
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a formal procedure is given by equations (22) and (23) for its computation with no free
parameters. The origin of the resulting ‘generalized damping function’ is a direct analogue
of the non-linear phonon decay process of figure 2(a) since the density-fluctuationpgnode
decays into the two-mode stafgy ¢,» via the non-linear interaction represented by the vertex
V(q, q1, g2) of equation (23).

Second, the MCT equation (20) and the method of evaluating the vertices is formally
equivalentto Kawasaki’'s mode—mode-coupling theory discussed briefly in section 2. However,
there is a profound difference between the implementation and results of the two theories. In
Kawasaki's analysis, the anomalous behaviour of mgdeises because one of the two other
modes with which it couples is already anomalous, and because the vertices themselves diverge
with the static susceptibility. In MCT, however, before the non-linear interactions are included,
all of the modes are regular, and finite-order perturbation theory does not produce a singularity.
The interesting new physics emerges only when the equations are solved self-consistently so
that modes;, ¢1, andg, are all treated on an equal footing. Asis varied, the structure
factors vary smoothly witly and7. The singularity in the solutions of equation (21) appears
spontaneously at some critical valilie as a zero-frequency pole in the Fourier transform of
¢, (2) for all ¢ simultaneously. This is the central, unexpected discovery at the heart of MCT.

Anumerical solution of the full MCT equations was first carried out for a system of particles
interacting via a Lennard-Jones potential by Bengtzelius [15] and has also been performed for
the hard-sphere system [16,17]. Most recently, it has been used for the Baxter model of sticky
hard spheres by Fabbiahal [18].

Numerical solutions of the MCT equations for the hard-sphere system with structure
factors calculated via the Percus—Yevick equation are shown fajtvadues in figure 3 (from
Franosclet al[16]). The different curves represent different packing fractiptebelled with
the indexn, wheregp = ¢.(1+¢) ande = £107"/3. The result for the critical packing fraction
¢ is indicated by the dark curve labelled c. Note that#or ¢., the correlators do not decay
to zero.

A remarkable aspect of MCT is that, in the weak-coupling limit (higbr low density),
solutions of the MCT equations (21) yield only the damped harmonic oscillator results. As
¢ increases, the non-linear coupling causes the correlation funepigndo stretch out to
longer times, generating not only some non-trivial intermediate-time dynamics, but the final
a-relaxation as well. Thus, the fult”(w) (shown in figure 7—see later), apart from the
high-frequency microscopic peak, is entirely due to the non-linear interactions. This result is
fundamentally different from the many empirical models in the literature in whichtheak,
some ‘fast process’, and a microscopic peak are added together, each containing some free
parameters which can then be adjusted arbitrarily to fit experimental data.

Ideally, the ability of MCT to correctly describe the dynamics of supercooled liquids
approaching the glass transition could be tested directly by comparing the numerically obtained
correlation functions, or the corresponding power spetia o) or susceptibility spectra
X, (w) directly to experimental data. This procedure has been partially carried out, for colloids
and computer simulations, to be discussed in this Special Issue by Gotze. However, liquids
composed of atoms or simple molecules generally crystallize rather than forming glasses,
while real glass-forming materials have intermolecular potentials which are too complicated
to allow accurate evaluation of the coupling coefficients. Therefore, most experimental tests
of MCT have been carried out either by comparison with simple schematic versions of MCT,
or with particular general predictions of the theory obtained from asymptotic expansions. We
consider these general MCT predictions in the following sections. A brief description of the
asymptotic analysis is given in the appendix.
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Figure 3. Solutions to the MCT equations for a hard-sphere system at two wavevegterg.0
andgz = 10.6. The unit of length is chosen such that the particle diameter is unity. The dark
curves labelled c are at the critical packing fracigen The other curves are labelled with an index

n whereg = ¢.(1 +¢) ande = +£107"/3. Exponential fits to the = 14 curves are shown by the
dark curves on the right. (From reference [16].)

3.2. Glass transition singularities

Thetr — oo limit of ¢, (¢) is called the non-ergodicity parametg7). At high temperatures,
where the coupling constanis(g, g1, ¢2) in equation (22) are small,(r) decays to zero
rapidly following the initial microscopic transient. The system is ergodic, fing- 0. With
decreasing’, the coupling constants increase smoothly, until the glass transition singularity is
reached wherg, (+) no longer decays to zero, even for infinite time. The density fluctuations
are then partially frozen in, singg (¢) only decays from 1 tgf, with 0 < f, < 1. The system
is then non-ergodic with the frozen-in density fluctuations producing elastic scattering. The
non-ergodicity parametef, is equivalent to the Debye—Waller factor in crystals.

Smooth variation of the coupling constants with decreadinpr increasing packing
fraction) leads to a critical temperatufe at which f, changes discontinuously from zero to
a non-zero critical valug;. Solving the MCT equations far— oo and7" — T, one finds
that, forT < T¢,

fo(T) = fE+N o (24)
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whereo o (T¢ — T)/Tc is called the separation parameter. This square-root cugp(ify

is the first general prediction of MCT. Since,&t= T¢, ¢,(t — o0) jumps discontinuously

from O to £, the dynamical singularity &fc constitutes a bifurcation. Because there are
many control parameters in the theory (all of #)g, many types of bifurcation are technically
possible. Thetype thoughtto be mostrelevantto the liquid—glass transition, the fold bifurcation,
is what occurs in the solution of a polynomial equation when two solutions coalesce. The results
discussed in this paper are appropriate for this case.

3.3. The two-step relaxation scenario

At high temperatures, solutions to the MCT equations have the form illustrated in figure 3 for
n = 0 or 1. The short-time microscopic transient decays to zero (with or without damped
oscillation) within a time window of about one decade. Agdecreases, the microscopic
transient is followed by decay towards a ‘plateau’, which is followed by a second decay ending
in the familiara-relaxation process. AB decreases further, the plateau extends to longer times
as illustrated in figure 3 for, e.g:,= 12. This splitting off of the structural relaxation from the
initial microscopic transient produces the two-step relaxation scenario in the region between
the microscopic dynamics and thedecay which has been observed in many experiments and
computer simulations. In MCT, this region is designatedatrelaxation region.

The development of the intermediate two-step decdal decreases reflects the growing
strength of the ‘cage effect’, i.e. temporary localization of a particle in the transient cage formed
by its neighbours. One can roughly view the sequence of dynamical regimes of the relaxation
process as an initial microscopic motion of each particle within its transient cage followed, in
the plateau region, by collective motion of the cage. The beginning of the decay away from
the plateau, called the von Schweidler decay, corresponds to the initial break-up of the cages
which is followed, finally, by the long-time-relaxation.

The plateau level fof' > T¢ is Iy the value of¢,(co) atT = T¢. As T approaches
Tc, ¢,4(t) remains close tgf;” for increasingly longer times. Close to the bifurcation, where
(T = Tc)/Te < 1, the MCT equations can be expanded in the small paramgter— f7.
Several central MCT predictions can then be derived analytically from this asymptotic analysis.

First, one finds that

bq(1) — f§ = heG@). (25)

This factorization result predicts that thedependence af, () — f in this asymptotic region
is completely specified by, (which is trivially related tor; in equation (24)), while the time
dependence of all correlators is given by the saAraependent functiot (¢), which is called
the B-correlator.G(¢) is the solution to the equation

AG%(t) +o = %/ Gt —1)G(t) dr'. (26)
0

Solving equation (26) fos < 0 (liquid), one finds thaG (¢) first decays to zero as* (the
critical decay), and then decreases-a$ (von Schweidler decay). The two exponeatand
b are related to each other via an exponent parametef2 < A < 1) by

A =T21/a)/T(A—2a) =T?(A+b)/T(1+2b)

whererl" (x) is the gamma function. Equation (25) is the leading-order asymptotic result usually
employed in comparing experimental data with MCT. The exponent paraméetehe only
material-dependent quantity, and is usually treated as an adjustable fitting parameter. For the
hard-sphere syster,was calculated with the Percus—Yevick approximation ta be0.74.
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The solutions of equation (26) have different formsdoxk 0 (liquid) ando > 0 (glass),
as discussed below in section 3.4. boe 0 (i.e. T = T¢), equation (26) is solved by

G(t)s=0 = (to/1)* (27)
wherery is a microscopic timescale of the order of #9s for molecular liquids, determined

by matching equation (25) to the microscopic transient. Thug, at T, ther= critical
decay extends to= oc.

8 logy 1)

Figure 4. Comparison of the MCT solution f@, (¢) (solid curve) with the asymptotjé-relaxation
approximation (dashed curve) (equations (25) and (26)).The dotted curves show the two power laws.
(From reference [4].)

Note thatg, () given by equations (25) and (26) matches the full solution of the MCT
equations only in the asymptotic region closegigzr) = f,; as shown in figure 4. This
asymptotic beta-correlator solution lacks both the short-time microscopic structure and the
long-time «-relaxation structure which are, however, present in the full MCT solutions.
Furthermore, the domain of validity of these leading-order asymptotic solutions cannot be
establisheda priori. Recently, this domain-of-validity question has been addressed by
Franosclet al[16] and Fuch&t al[19] who compared numerical solutions for the hard-sphere
system with MCT fits using both leading-order and leading-order plus next-to-leading-order
MCT solutions.

3.4. The two scaling regimes

Solutions to the MCT equations, such as those for hard spheres shown in figure 3, can be
replotted in scaled form as shown in figure 5. In (a), the full solutions are shown; in (b),
the scaling brings thg-relaxation regions into coincidence; in (c), the scaling bringsthe
relaxation regions, including the von Schweidler decay, into coincidence. These plotsillustrate
the scaling regions of the MCT equations that can be found analytically from the asymptotic
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Figure 5. MCT solutions for the hard-sphere system o= 10.6; (a) for unscaled time, as in
figure 3; (b) with time scaled tg/ 7, ; (c) with time scaled to/z/ . The index: defines the packing
fraction by(¢ — ¢.)/¢. = £107"/3. The solid circles and squares in (a) indicate the timesd

1/ respectively fom = 5 and 9. The dashed curve in (b) is the master functioff). The full

curves show the rescaled correlatdr§ ) = (g (t/15) — f‘;')/hq\/\al. The open symbols mark

the positions where the correlators deviate from the master function by 20%. The heavy curve in
(c) is the master functiof® and the open symbols mark the positions whgrend F differ by

20%. (Courtesy of M Mayr.)
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solutions. They also illustrate that the scaling region increases rapidly with increasmas
the packing fractiop approacheg,, or T approacheg¢. Let us consider the two scaling
laws in detalil.

3.4.1. The first§-) scaling regime. Theg-correlatorG(¢), defined by equation (26) for any
selected value of, can be shown analytically to obey the scaling laws

G(1)o<0 = lolg-(t/15) (289)

G(t)o0 =/ |o|g+(t/15) (280)
where the scaling timeg is given by

1, = to/]o Y%, (29)

The master functiong..(¢/t,) are solutions to equation (26) with= £1. Master functions
g+(f) for » = 0.735, where the scaled tinie= t/1,, are illustrated in figure 6(a). For short
times ¢ < t,), both master functions follow the critical decay lgw = . For longer times
(t > t,), the liquid master functiog_(7) follows the von Schweidler law_(f) = —B#’
while the glass master functign (7 ) has the constant valug /1 — A. (When leading-order

log,, &

Figure 6. (a) Master functiong. () andg_(f) for A = 0.735. The dashed curve shows the von
Schweidler decay. The solid curve marked c is the critical correfator(b) Susceptibility master
functionsx (@) for A = 0.735 illustrating the minimum and the knee. The solid curve marked c
corresponds to the critical point whexé (w) o w“. (From reference [16].)
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corrections to the asymptotic scaling laws are included, these two power-law regimes are
described by ~¢(1 + pf~*) and— B’ (1 + \/Jo | p't") [16].)

From the correlation functiong, (¢), the power spectruni(q, w) is found by Fourier
transformation, and the susceptibility spectruff{w) follows by multiplying S(¢, w) by w.
The scaling laws fop, (¢) also imply scaling laws for the susceptibility spectra as indicated
in figure 7. They”(w) spectra in thg-relaxation region should scale as

XL(@) = hg/|o| K+ (ts). (30)
The susceptibility master functiors. for A = 0.735 are shown in figure 6(b). F@r > T¢,
the form of the MCTx” (w) function in the vicinity of the minimum is given approximately
by the interpolation equation:

¢ min b 1
o) (2]

(wmin is proportional taw, = 1/¢,).

For bothT < Tc andT > T¢, x”(w) should exhibit a critical-decay region aof*
power-law behaviour for frequencies above the minimum but below the region of microscopic
dynamics:

X4 (w) x o (o K 0 K ). (32)

(Note that if the region of microscopic dynamics is not sufficiently far away fagm, this
critical decay region may be difficult to observe, and fits of experimental data to equation (32)
can produce some. which is unrelated to the critical exponen) Forew < w,, the two
x"(w) master curves are different. For> T, the von Schweidler power-law behaviour is
predicted:

b (0o € 0 K w5) (33)

wherew, = 1/ (z is the second scaling time discussed in the following section)TFeorTc,
a linear regime is predicted:

A (@) X @ O<w<Kw). (34)

x” (@) x w™

ForT > T¢, the two power-law regions~" andw® are separated by the susceptibility
minimum atwmi,. ForT < T¢, the two power-law region®® and w® should produce a
slope change appearing as a downward-concave feature—the ‘knee’ (see figure 6(b)). We
note that the existence of a ‘knee’ is not a unique feature of MCT. Any modes forat
low temperatures (such as equation (1)) which includes fast-relaxation dynamics followed
at a much longer time by the finatrelaxation can produce such a feature. The non-trivial
MCT predictions concern the form and scaling properties of both the knee and the minimum.
The knee, however, is strongly affected by activated hopping processes not included in this
idealized version of MCT. We will discuss these effects further in the next section.

As T approached¢, the range of frequencies for whigt' (w) follows the scaling law
(equation (30)) increases, as can be seen in figure 7(b). Therefore, in using MCT to analyse
experimental data, the fitting range must be chosen so as not to exceed the scaling range. This
point was discussed in detail by Wo&e in his talk mentioned earlier.

3.4.2. The secondxf) scaling regime. As seen in figures 5(c) and 7(c), solutions to
the MCT equations can also be scaled so thatotftiecay regions o, () or x” (w) for
different temperatures overlap. Thisscaling is the MCT equivalent of the conventional
time—temperature superposition principle which asserts that relaxation spectra at different
temperatures can be superimposed by scaling the time agherer is thea-relaxation time.
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log, ot

Figure 7. x”(w) spectra for the hard-sphere systeng at 10.6 as in figure 5; (a) the unscaled
frequency; (b} scaled tav/w, ; (C) w scaled tav/w,’ = wt,,. (Courtesy of M Mayr.)

The long-time asymptotic analysis of the MCT equationsfet O and(T —T¢)/Te < 1
leads to the scaling relation

Gq(1) = F/(t/7) t > 15). (35)

The master functioi; is independent of . It is determined by the vertices in equation (23)
evaluated fo" = T¢. In contrast to that in thg-relaxation regiong, (¢) in this a-relaxation
region has no universal form. Numerical solutions of the MCT equations show that the
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relaxation can be described, to a good approximation, by the Kohlrausch stretched-exponential
function

b (1) = f7 expl—(1/7,)"]. (36)

However, bothr, and g, are found to bez-dependent in solutions of the MCT equations,
a result also confirmed by computer simulations and neutron scattering experiments. Since
the von Schweidler exponehntis independent of, there cannot be any simple relation, in
general, betweeh and 8. An exception occurs foy — oo where Fuchs has shown that
equation (36) is exact, withi(¢ — oo) = b [20]. Note that thex-scaling (equation (35)) is
an asymptotic result fofT — T¢)/Tc < 1, and its domain of validity is not known. From
reference [16], however, it is known that the range of validity of the asymptetalaxation
results is much larger than that of tBeelaxation results, accounting for the general validity of
time—temperature superposition torrelaxation. For temperatures far abdye g may either
increase or decrease with increasihgvithout violating the asymptotic MCT predictions.

Finally, we consider the temperature dependence predicted by MCT farttblaxation
time r. From equations (25) an@8z), and the form ofg_(¢/t,) = —B(t/t,)" in the von
Schweidler regime, one has

b
000~ 1 Vi) @)

But

t\ 1 bl b

o

so the von Schweidler decay region must move to longer tim@&sdecreases following

t,=B"1/|o] (3%)
with
1 1
= — + —,
v=o5%5 (3%)

(B isanumber of order unity determined by Since thex-relaxation must smoothly continue
the von Schweidler decay, MCT predicts thatdéheelaxation timer has the same temperature
dependence a$:

o(T) = 1o(T —T¢c)™” (T > T¢). (40)

Plots of (1/7)Y7 versusT exhibit linear behaviour as predicted by equation (40) over
considerable temperature ranges, extrapolating to zerdlatthat is generally compatible

with the T¢ deduced from thg8-relaxation analysis. However, on approachifig plots of
experimenta(1/7)Y” data generally deviate from the linear extrapolation, exhibiting upward
curvature. This observation indicates that, in structural glasses, the complete structural arrest
at T predicted by the idealized MCT does not occur.

3.5. Extended MCT

The ideal glass transition predicted by the idealized MCT is not observed in real glass-forming
materials (with the possible exception of colloidal glasses). Instgdd), always relaxes from

the plateau to zero after a sufficiently long time. Non-ergodicity is therefore only observed
on timescales short compared to the final relaxation time. At very low temperatures, however,
the final relaxation becomes glacial, unobservable on any practical experimental timescale.
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Figure 8. Correlation functiong (¢) (this page) and susceptibility specjré(w) (facing page) for
a schematic model of the idealized MCT (a) and the corresponding extended model (b). Curves
A-G are forT > T¢ while curves F-B' are forT < T¢. (From reference [23].)

The singularity at7c predicted by MCT results from restricting the memory kernel
(equation (22)) to the dominant terms which are pairs of density-fluctuation modes. Inthe next-
to-leading-order terms im, (¢), current modes occur, as first shown by Das and Mazenko [21]
and by Gtze and Sjgren [22,23]. When these terms are included, equation (2&) foris
replaced by

t
AG?+o — 8t = %/ Gt — )G dr’ (41)
0

which differs from equation (26) only by the termds. This term is an approximation for
the complete effect of the current terms which resembles phonon-assisted activated hopping
processes in crystals. Even if the hopping paramgtersmall, the term-3¢ will always
dominate at sufficiently long times, causiggz) to eventually fall below zero, initiating the
a-decay.

Figure 8 shows the correlation functiopg(r) (left) and the corresponding susceptibility
spectray” (w) (right) computed for a schematic MCT model for the idealiz&d=( 0, top)
and extended (bottom) versions. In this model, only one correfatsrconsidered, and the
right-hand side of equation (22) is replaced by a polynomigl(r) + v,¢%(¢). Note that the
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Figure 8. (Continued)

a-peak iny”(w) disappears df¢ for the idealized MCT but is present at all temperatures for
the extended MCT.

The x”(w) spectra forT > T¢ are changed somewhat by hopping effects, especially
at low frequencies where the long-time propertiesppft) are most important. BelowWe
however, as the dominant dynamics crosses over from cage-effect hydrodynamics to activated
transport, the spectra are strongly modified. The ‘knee’ in figure 6(b) can be modified or
eliminated [24], and the cusp ifj, (T) (equation (24)) can be broadened. We recall that the
knee is a consequence of the crossover from the critical decay to the horizontal platégu in
versust. If another decay process (such as activated hopping) causeto decay before
the plateau is fully developed, the knee will be absent. This appears to be the case for most
glass-forming materials, although not for colloidal glasses. Figure 9 illustrates the evolution
of the susceptibility spectrum with decreasifigvhen hopping is included. Note that the
minimum persists, even at the lowest temperatures.

In the original (idealized) version of MCTy is a critical temperature at which complete
structural arrest occurs. In the extended version, the singularity is avoidety argresents
a crossover temperature between the high-temperature regime dominated by liquid-like cage
effects, and the low-temperature regime dominated by solid-like activated hopping processes.
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Figure 9. Susceptibility spectra” (w) for temperatures decreasing from curve 1 to curve 9 with
hopping included, illustrating the persistence of the minimuffi at 7. Curves 1-3 correspond
toT > T¢, curve 4 toT = T¢, and curves 5-9 t& < T¢. (From reference [24].)

The extended version of MCT represented by equation (41) is a firstapproximation. Acomplete
MCT description of the dynamics faf < T¢ has not yet been formulated.

4. Summary and conclusions

The idealized MCT equations are currently being extended by several groups to include more
realistic intermolecular potentials as well as orientational effects. These extensions should
eventually permit more complete comparison of experimental data with full MCT predictions
rather than with just the results of asymptotic expansions. So far, however, almost all tests of
MCT have been carried out using the MCT asymptotic predictions discussed in the preceding
sections. These tests, discussed in detail by 3z include:

(1) The cusp inf, (T) atTc (equation (24)).

(2) The power-law critical decay @f, (¢) towards the plateau.

(3) The von Schweidler power-law decaygf(r) away from the plateau.

(4) Scaling of correlation functions and susceptibility spectra ingtfrelaxation region
and the temperature dependence of the scalinggjnfequations (28) and (29)).

(5) The factorization propertyfindependenttime dependence) in fheslaxation regime
(equation (25)).

(6) Scaling of thex-relaxation and temperature dependence of the second scaling time
(equations (35) and (39)).

(7) The evolution with temperature ¢f (1) and x,/ ().

Comparison of experimental data with these predictions is a subtle procedure and the
results are not always clear cut. Nevertheless, a growing body of experimental data and
computer simulation results indicate that the essential features of the dynamics of liquids
approaching the liquid—glass transition is correctly contained in the MCT description, at least
for temperatures abov&-. Elaboration of the theory fdf < T remains to be pursued in the
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future.
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Appendix. Elements of the MCT asymptotic3-relaxation analysis

This appendix is based on references [25] and [1].
For the following discussion, we consider a schematic MCT model with a single correlator
¢(t). The equation of motion and the memory function are given by

d(t) + Q2P (1) + / t M — 1)) di' =0 (A.1)
0

M@ = y8(@t) + Q%m(1) (A.2)

m(t) = Flp(1)] = v (1) + va9p* (1) + - - - (A.3)

wherev; andv, are smoothly decreasing functions of temperature or increasing functions of
density.
Laplace transformation of equation (A.1) with the Laplace transform convention

Lip®)] =i /0 (1) di = (2)

yields

-1

QZ

7+y +Q2%m(z)

As T — T¢ from above (oro — pc from below), solutions to the MCT equations
extend to longer and longer times (see figure 3), exhibiting a plateau at a levef0< 1,
with the result thatp (z = 0), which is the integral of (¢), diverges. Therefore, for small
z, ¢(z) and, via equation (A.3)n(z) as well become very large. In the second term in the

denominator of equation (A.4),andy can then be ignored in comparisors®ém (z). In this
limit, equation (A.4) becomes

¢(2) = (A.4)

m(z)
Inverse Laplace transformation of equation (A.5) gives

/O m(t —t)p(t) dﬂ:fo [m(t) — ¢(¢)] dr'. (A.6)

Equation (A.6) applies for the liquid close T and also for the glass, and is the starting point
for the asymptotic analysis. The— oo limit of ¢ (¢) is the non-ergodicity parametgr. For
p <pc, f=0;forp=pc, f=fforp>pc, f> fC.
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We next letp(t) = f+ (1 — f)G@) andp = pc(1 +¢) and carry out a power series
expansion of equation (A.6) using battandG (¢) as small parameters. Since this analysis is
for ¢ (¢) close to the plateau, it applies—by definition—only to theelaxation region.

For the zeroth-order approximation, ¢&tr) = f andF[¢] = F(f). Then equation (A.6)
becomes

FNft=[F(f)—flt > F(HA-f)=f (A.7)
so

f
F(f)y=——. A.8
(N=1= (A8)
Equation (A.8) determines the non-ergodicity paramgter
Consider, for example, the simplest schematic modelFthélLeutheusser) model:

m(t) = Flp(1)] = V(1) (A.9)
f _ 2 _ V+4J/V2-4V _
—1_f_Vf —>f_—2V f=0. (A.10)

For V < 4, the only real solution to equation (A.10) fs= 0. ForV = 4, a second real
solution appears:

1

fV=4=7Ff= > (A.11)
which locates the bifurcation & = 4. ForV > 4,
1 1
=—-+-V - A.12
f R Ve ( )

for which only the upper (+) solution is physical. Assuming that V increases linearlyavith
(or decreases linearly with) then gives the square-root cusp result of equation (24) in the
main text.
Next, F[¢(¢)] is expanded in botlé: ande for f = f¢:
F°¢ aF°¢ 1[d2F¢

Flp(1)] = FLf]+ + 1- G+ 2| — |- fOHG*+--- (A13

R T B e e L e e (a.13)
where the derivatives are evaluatectat 0 and¢ () = f¢. The zeroth-order term in the
resulting expansion of equation (A.6) is equation (A.8) for the critical point. The first-order
term vanishes, and this is the condition for the critical point. The second-order term gives

/[AGz(t/)+a] dﬂ:/ Gt —1t)G(')dr (A.14)
0 0

with o o € andx = 3(82F/3f?)(1 — £)°. Equation (A.14) gives equation (26) in the
main text which defines the beta-correlaté(z). At p = pc (or T = T¢), o = 0, and
equation (A.14) becomes

t t
x/ G2(1) dt’:/ Gt —1t)G(t)dr'. (A.15)
0 0
Consider a power-law trial solution for equation (A.15):
G(t) = yt* (A.16)

with which equation (A.15) is

72 / (% dt’ = 2 / (t — )" ()" dr'. (A.17)
0

t
0
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For equation (A.17) to be satisfiedandx must be related by
. r'?(1+x)
T+ 2

wherer (x) is the gamma function.

There are two solutions to equation (A.18) foRI< A < 1: x =bwith0 < b < 1, and

x = —a with 0 < a < 0.395. This is the origin of the critical decay law (equation (27) in the

main text) and of the gamma-function relation between the critical exponemiss of MCT.

The derivation of equation (A.14) can be generalized to the full MCT equations, but the proof

and resulting formulae far and) are somewhat more complicated [3].

(A.18)
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