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Abstract. We review the dynamics of supercooled liquids approaching the liquid–glass transition,
starting with the conventional generalized hydrodynamics formulation. Empirical models for the
memory function are discussed, as are empirical models for the self-energy function for phonons in
crystals. Two examples of microscopic analyses based on non-linear interactions are then described,
the anharmonic lattice dynamics model for structural phase transitions, and Kawasaki’s mode–
mode-coupling approach for critical dynamics. We then review the mode-coupling theory of the
liquid–glass transition, emphasizing its relation to generalized hydrodynamics with the memory
function derived from a microscopic theory of non-linear interactions. We discuss the major
predictions of this theory, particularly the asymptotic expansion results, which provide specific
formulae for analysing experimental data.

1. Introduction

Although the liquid–glass transition resembles a second-order phase transition, with the liquid
transforming continuously into an amorphous solid with no latent heat, it exhibits no diverging
correlation length, symmetry change, or obvious order parameter. It is therefore generally
not considered as a conventional thermodynamic phase transition and is better understood as
a dynamical phenomenon, an ergodic–non-ergodic transformation related to a singularity in
the underlying dynamics. The challenge has been to find a theoretical framework capable of
predicting such a transformation and of simultaneously providing a detailed description of the
relaxation dynamics of liquids and its evolution with decreasing temperature.

In 1984, Bengtzelius, G̈otze and Sj̈olander [1] and Leutheusser [2] showed that a particular
version of a mode-coupling theory of liquids could lead to a dynamical singularity with
characteristics resembling those of the liquid–glass transition. Subsequent analysis of this
theory (now usually called MCT) by G̈otze and Sj̈ogren and co-workers led to several detailed
predictions for the dynamics of supercooled liquids which have stimulated much of the recent
research in the glass transition field. One notable characteristic of the new approach is an
extension of interest from the very slow structural relaxation close to the calorimetric glass
transition temperatureTG, to include higher frequencies and higher temperatures, bringing into
play a number of new experimental approaches. In his talk given as part of the Workshop to
which this Special Issue is devoted, Wolfgang Götze reviewed some of the recent experiments
that have provided crucial tests of MCT.

In this article I will present an introduction to MCT from an experimentalist’s point of
view, with no claim to completeness or mathematical rigour. The goal will be to consider
MCT in the context of some earlier ideas, and then to describe how MCT leads to some of its
specific predictions. Detailed discussions of the theory can be found by the interested reader
in, e.g., references [3] and [4].
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1.1. The relaxation function

The shear viscosityηs of liquids capable of being supercooled without crystallizing increases
from ∼10−2 P at temperatures well above the melting temperatureTM , to 1013 P at the
calorimetric glass transition temperatureTG. Maxwell’s theory of viscoelasticity predicted that
the characteristicα-relaxation timeτα required for the local structure to relax to equilibrium
after sudden application of a shear strain would increase withηs asτα = ηs/G∞ whereG∞ is
the high-frequency shear modulus. Many experimental studies with stress relaxation, dielectric
susceptibility, ultrasonics, and other techniques have verified the predicted rapid increase of
τα with decreasingT . However, in place of the single-exponential relaxation assumed by
Maxwell, theα-process relaxation functionφ(t) (also called a correlation function) is generally
found to be better described by a stretched-exponential (Kohlrausch) function.

As experimental techniques evolved and measurements were extended to shorter times
(or higher frequencies), it was found that there is also some fast relaxation preceding the onset
of the finalα-relaxation. These observations suggest that the relaxation function, normalized
to φ(0) = 1, might be represented approximately by

φ(t) = (1− f )g(t) + f exp
[−(t/τα)β] (1)

wheref is the level at which the alpha relaxation begins. A schematic version ofφ(t) is
shown in figure 1 where, on a linear timescale, only the slowα-relaxation is visible, while on
a logarithmic timescale the fast relaxation can also be seen.

With decreasingT , the slow relaxation moves to longer times, eventually ‘freezing in’
with the result that the plateau around region B in figure 1 effectively extends to infinity,

Figure 1. A schematic plot ofφq(t) versus log(t) for a moderately supercooled liquid; (A) the
long-timeα-relaxation region; (C) the short-time (microscopic) region; (B) the intermediate region
exhibiting two-step relaxation. Inset: on a linear timescale, only the finalα-relaxation region is
visible.
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resulting in elastic scattering of neutrons or light. With further decrease ofT (ignoring quantum
fluctuations), the amplitude of the fast relaxation(1− f ) decreases, so that of the frozen-in
component has to increase:f → 1 asT → 0.

The relaxation functionφ(t) represented in figure 1 or its Fourier transformS(ω)
(whose real part is the power spectrum) has been investigated with many experimental
techniques. Frequently, experimental data have been analysed with equation (1) with the
fast-relaxation componentg(t) represented by some convenient phenomenological function
such as exponential relaxation. In the simplest ‘minimal model’,g(t) is attributed entirely
to vibrational dynamics. It is extracted from low-temperature spectra where relaxation is
presumably frozen out, and is assumed to be independent of temperature. While this minimal
model ofα-relaxation plus vibration does not generally provide accurate fits of experimental
data [5], it is worth noting that such models do qualitatively predict two principal features of
the dynamics as reflected in the susceptibility spectraχ ′′(ω). If the fast relaxationg(t) decays
after a timetf and is followed by theα-relaxation, there will generally be a susceptibility
minimum. At lowT , when theα-decay has moved to extremely long times with the result that
the fast decay is followed by an extended plateau before the onset of theα-decay, the spectrum
will be flat (white) for a range of frequencies belowωf = 1/tf , andχ ′′(ω) in this region
will be proportional toω. The resultant downward bending of the susceptibility spectrum at
ωf will produce a ‘knee’ at low temperatures. The susceptibility minimum and the knee are
therefore very general predictions of any two-step decay model. The challenge to theory is
that of correctly predicting their shape and temperature dependence.

1.2. Equations of motion: liquids

In simple liquids, classical hydrodynamics describes the density fluctuationsδρ(r, t) by
an equation of motion for the Fourier componentsρq(t) or for φq(t), the normalized
autocorrelation function ofρq(t):

φq(t) = 〈ρq(t)ρ∗q (0)〉/〈|ρq |2〉 (2)

as

φ̈q(t) + γqφ̇q(t) + ω2
qφq(t) = 0 (3)

whereωq = cq, c is the adiabatic speed of sound, andγq ∝ q2 is the sound attenuation coeff-
icient. Temperature (entropy) fluctuations, which couple to the density via thermal expansion,
are ignored here for the sake of simplicity. From equation (3) the density-fluctuation spectrum
Iq(ω) can be computed using either

I (ω) = I0

ω
χ ′′(ω) (4)

which is the low-frequency version of the fluctuation-dissipation theorem, or else, equivalently,
with the Wiener–Khintchine theorem

I (ω) = I0

π
Re[φ(s)] (5)

whereφ(s) is the Laplace transform ofφ(t). From equation (3) we find

I (ω) = I0γq

(ω2
q − ω2)2 + (ωγq)2

(6)

which, for γq � ωq , is the conventional Brillouin doublet consisting of peaks at±ωq
with half-width γq/2. For liquids possessing relaxation dynamics, equation (3) can be
generalized by replacing the damping constantγq with a frequency-dependent damping
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function0q(ω) = γq +mq(ω). Mountain [6] first used this procedure with the relaxing degree
of freedom responsible formq(ω) represented by the Maxwell–Debye single-exponential
relaxation form

0q(ω) = γq + iτ12
q/(1− iωτ) (7)

with which the spectrum

I (ω) = I0(ω2
q/π)

γq +m′′q(ω)

[ω2 − ω2
q + ωm′q(ω)]2 + [ω{γq +m′′q(ω)}]2

(8)

becomes

I (ω) = I0[γq +12
q/(1 +ω2τ 2)]2

[ω2
q − ω2 + ω212

qτ
2/(1 +ω2τ 2)]2 + [ωγq + ωτ 212

q/(1 +ω2τ 2)]2
. (9)

Equation (9) predicts that whenωqτ � 1, the spectrum consists of a triplet: the two
Brillouin components plus a new quasielastic feature, the ‘Mountain peak’, which is theα-peak
of the density correlator in the hydrodynamic regime. Equation (3) can be further generalized
by replacing the frequency-dependent part of0(ω)with a more elaborate function (such as the
Kohlrausch or Cole–Davidson function) and replacingωq by a general frequency�q . Then
equation (3) becomes

φ̈q(t) +�2
qφq(t) +

∫ t

0
dt ′ Mq(t − t ′)φ̇q(t ′) = 0. (10)

Equation (10) has frequently been used as the starting point for the analysis of experimental
data, with the memory functionMq(t)modelled with various parametrized empirical functions.
While such generalized hydrodynamics approaches can often provide excellent fits to
experimental data, they produce no insight into the physical processes responsible for the form
and the strong temperature dependence of the dynamics. What is missing in these approaches
is a theory ofMq(t).

1.3. Equations of motion: solids

In the conventional harmonic theory of lattice dynamics, the potential energy is initially
truncated, retaining only terms quadratic in the atomic displacements. The resulting equations
of motion can be diagonalized, yielding the lattice vibration modes, each with wavevector
Eq and vibrational frequency�Eq . (In the following, the quantitiesEq will not be explicitly
represented as vectors.) Each mode can be characterized by a Green’s function or phonon
propagator which, in this harmonic approximation, is

G0(q, ω) = 2ω/βh̄

�2
q − ω2

. (11)

This ‘bare’ harmonic Green’s function can be modified to include anharmonic interactions
by computing, via perturbation theory, the complex self-energy function6(q, ω) with which
the phonon propagator becomes

G(q, ω) = 2ω/βh̄

�2
q − ω2 + 2�q6(q, ω)

. (12)

The self-energy6(q, ω) produces damping through its imaginary part and a frequency shift
through its real part.

Axe et al [7] introduced a phenomenological self-energy function

6(q, ω) = −iωδ2/(γ − iω)
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to explain the central-peak phenomenon, a narrow quasielastic feature appearing in the neutron
and light scattering spectra of crystals undergoing structural phase transitions. This is an exact
analogue of Mountain’s approach for liquids described above. Winterling [8] first used this
relaxing self-energy approach for glasses in order to explain the excess low-frequency light
scattering intensity observed in the Raman spectrum of vitreous silica. He used the same
empirical memory function as was used by Axeet al, combined with a sum over modes
often employed for amorphous solids because their normal modes are not spatially periodic.
Winterling wrote

I (ω)

ω[n(ω, T ) + 1]
∝
∑
q

Cb(q)
1

ω
Im[D(q, ω)] (13)

whereCb(q) is an optical coupling constant, and

D(q, ω) = {ω2 − ω2
0(q)[1− igωτ/(1− iωτ)]}−1. (14)

Winterling’s approach has been elaborated in a series of papers by Sokolov and co-workers
[9] with the relaxing part ofD(q, ω) taken as the Debye function (as in equation (14)) with
the amplitude and relaxation time treated as free fitting parameters. Here, as for supercooled
liquids, good fits to experimental data can be obtained, and the approach is a promising way
to view the liquid–glass transition from the glass side.

2. Non-linear effects

Equations (10) and (12) can be shown to be formally exact, with all the unknown physics
hidden in the memory kernelMq(t) or the phonon self-energy6(q, ω). While data fitting
can be carried out using empirical fitting functions, the real challenge is to find a method for
deriving these functions rather than simply guessing at their form. In this section we recall
briefly two examples from the field of critical phenomena that suggest a more fundamental
way to proceed, based on treatments of non-linear interactions.

2.1. Structural phase transitions

The first example is that of second-order structural phase transitions in which a crystal
spontaneously destabilizes on cooling through a critical temperatureTC and transforms
continuously to a new lower-symmetry structure. Such transitions are characterized by a ‘soft
mode’, a lattice vibration whose frequency decreases with decreasing temperature, reaching
� = 0 atT = TC . Since a necessary condition for the stability of crystals is that�2

q > 0
for all vibrational modes, the soft mode can be considered as the origin of the instability that
drives the displacive phase transition.

The phonon self-energy function6(q, ω)of equation (12) can be calculated approximately
via anharmonic lattice dynamics [10]. As shown schematically in figure 2(a), cubic anharmon-
icity causes the phononq to decay into two new phonons,q1 andq2, which produces damping
or a finite phonon lifetime. The same interaction in second order, as shown in figure 2(b),
is the leading contribution to the self-energy. The summation of such diagrams leads to an
expression for6(q, ω) from which the temperature-dependent phonon properties can be found.
Such calculations require as input only the equilibrium structure and the interatomic potentials.

The application of this anharmonic phonon theory technique to displacive phase transitions
begins with the observation that for the crystal structure that is stable at high temperature, the
harmonic solutions may show that, for some mode,�2

q < 0; the high-temperature structure
would therefore be unstable atT = 0. However, since the anharmonic contributions cause
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Figure 2. Anharmonic phonon interaction effects. (a) Lowest-order cubic anharmonic decay of a
phononq into two phononsq1 andq2. (b) The leading contribution to the self-energy6(q, ω) of
the phononq with intermediate two-phonon statesq1, q2.

6(q, ω) to increase with increasingT , the renormalized resonance frequency (i.e. theω

for which the denominator in equation (12) vanishes) may be positive at high temperatures.
ThusTC corresponds to the temperature at which�2

q + 2 Re[�q6(q, ω)] decreases to 0 with
decreasingT , from which the soft-mode behaviour follows.

Calculation of the full self-energy function is impossible since it requires summing over
infinitely many diagrams. However, the leading-order self-energy diagram of figure 2(b) can
already approximate the full solution if the initial modeq and the two intermediate-state modes
q1 andq2 are treated self-consistently [11]. So the dynamical process underlying structural
phase transitions can be understood as anharmonic phonon interactions which renormalize
not only the ‘primary’ phononq, but all phonons self-consistently. This, in very simplified
form, is the anharmonic lattice dynamics explanation of structural phase transitions. While this
formulation does not provide accurate quantitative predictions for the temperature dependence
of the soft-mode frequency, it does capture the origin of the instability and resulting phase
transition. Note that in this approach there is no ‘built-in’ anomaly. Without the anharmonic
terms the vibrational modes would remain purely harmonic with theirT = 0 frequencies, and
exhibit no temperature dependence.

2.2. The liquid–vapour critical point

The second example that we consider is Kawasaki’s mode–mode-coupling theory for the
liquid–vapour critical point. Liquids, lacking atomic equilibrium positions and the regular
spatial structure of crystals, cannot be described by the theory of lattice vibrations (although
a related approach called instantaneous normal-mode analysis has been pursued by some
authors). Liquid dynamics is usually formulated in terms of kinetic equations which include
some basic assumptions such as the separation of fast and slow variables. A general theory of
liquid dynamics, due to Mori and Zwanzig, expresses the equation of motion of a dynamical
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variableA(t) as a generalized Langevin equation:

dA

dt
= i�A(t)−

∫ t

0
dτ K(τ)A(t − τ) + F(t). (15)

The quantity� and the functionsK(t) andF(t) are designated as the frequency, memory
function, and random force, respectively, and are formally determined exactly by the Liouville
operator. (For a description of the Zwanzig–Mori formalism, see e.g., [12].) The memory
functionK(t) is proportional to〈F(t)F ∗(0)〉, the correlation function of the random force.
Equation (15) can be extended to a set of variables (A1, A2, . . . , An); A andF(t) then become
column vectors while� andK(t) become matrices. Equation (15) simplifies if all the slow
variables are included inA(t), while the random forcesF(t), which include all of the fast
variables, have correlation functions which decay very rapidly such thatK(t) = 2πγ δ(t).

Kawasaki introduced a crucial extension of the Zwanzig–Mori formalism for systems near
a critical point [13]. Close to a critical point, fluctuations become very large, and non-linear
interactions can become important. Fixman [14] had first considered how such non-linear
interactions would modify sound waves, entropy fluctuations, concentration fluctuations, and
transverse velocity modes nearTC . Kawasaki constructed a formal theory of these non-linear
effects by extending the set of slow variablesA to include productsAiAj as additional slow
variables. He then separated the ordinary single variablesAj(t) and the product variables
Aq ′(t) = Aq1Aq2 to obtain

dAq(t)

dt
= (i�q − 0q)Aq(t) + (i�q ′ − 0q ′)Aq ′(t). (16)

In order to calculate correlation functions of theAq(t)

φq(t) = 〈Aq(t)A∗q(0)〉 (17)

the product variables must be eliminated. This was done formally via the Mori–Zwanzig
approach which produces four-point correlation functions. Kawasaki factorized these four-
point functions into products of two-point correlation functions (the factorization approx-
imation) and found the following equation of motion forφq(t):

dφq(t)

dt
= i�qφq(t) +

∫ t

0
dt ′ Kq(t ′)φq(t − t ′) (18)

where the memory functionKq(t) is given by

Kq(t) =
∑
q1,q2

V (q, q1, q2)φq1(t)φq2(t). (19)

The power of this approach is that the coupling constantsV in equation (19) can be calculated
with the projection operator formalism. Thus, a set of closed equations are found, permitting
quantitative evaluation of the effects due to the non-linear interactions.

From these equations, Kawasaki evaluated the contributions of diagrams beginning with
ones like that of figure 2(b). The results provided quantitative predictions for various dynamical
properties near the critical point that were extensively tested and often found to provide
excellent agreement with experimental measurements. A striking result of Kawasaki’s analysis
was the prediction of critical anomalies in transport coefficients, a result not anticipated in
earlier theories of critical phenomena. These anomalies occur when a transport mode, e.g. a
thermal diffusion mode, is considered as the primary modeq in the non-linear dynamical
equations, and one of the two modes in the intermediate two-mode state is the order-parameter
mode, e.g. a density-fluctuation mode for the liquid–vapour critical point.

Note that these transport anomalies are secondary consequences of the growing
fluctuations in the order parameter asT approachesTC . For the liquid–vapour critical point,
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for example, the amplitude of the density fluctuationsρq(t) diverges asT → TC . The new
transport anomalies predicted by Kawasaki’s mode–mode-coupling approach are due to the
non-linear effects of these growing fluctuations and of the static susceptibilities, which are
built into the calculations from the outset.

3. Mode-coupling theory of the liquid–glass transition

3.1. The MCT equations and their solutions

MCT begins with the equation of motion (10) for the normalized density correlation function
φq(t) which can be derived from the Zwanzig–Mori formalism [3]:

φ̈q(t) +�2
qφq(t) +

∫ t

0
dt ′ Mq(t − t ′)φ̇q(t ′) = 0 (20)

where the memory kernelMq(t), the correlation function of the fluctuating forceFq(t), is
then separated into a ‘fast’ (regular) componentγqδ(t) and a time-dependent part�2

qmq(t).
(The frequency�2

q = q2v2/Sq is the normalized second moment ofS(q, ω), v is the thermal
velocity, andSq denotes the static structure factor.) Equation (20) then becomes

φ̈q(t) + γqφ̇q(t) +�2
qφq(t) +�2

q

∫ t

0
mq(t − t ′)φ̇q(t ′) dt ′ = 0. (21)

Since the fluctuating force occurs primarily between pairs of particles, the dominant
contribution toFq(t), the Fourier transform ofF(r12) δρ(r1, t) δρ(r2, t), can be approximated
as a sum of density-fluctuation pairsρq1(t)ρq2(t) with q1 + q2 = q. With Kawasaki’s
factorization approximation applied to the resulting four-point correlators, one obtains for
the leading-order contribution tomq(t)

mq(t) = 1

2

∫ ∫
d3q1 d3q2

(2π)6
V (q, q1, q2)φq1(t)φq2(t)δ(q + q1 + q2). (22)

The vertices (or coupling constants)V (q, q1, q2) are completely determined by the static
structure factorsSq via

V (q, q1, q2) = (n/q4)SqSq1Sq2[ Eq · Eq1Cq1 + Eq · Eq2Cq2]
2. (23)

(Cq is the direct correlation function, related toSq by Sq = 1/[1− nCq ], andn is the density.)
Note that equation (23) for the coupling constantsV contains only the static structure

factors and not the intermolecular potentials. This is a crucial simplification since for some
potentials (e.g. hard spheres) the potential is singular, but the structure factors are nevertheless
well behaved. The origin of this simplification lies in treating the fluctuating force not as the
gradient of the intermolecular potential (which may be undefined), but instead, via Newton’s
equation, as the time derivative of the current. One then finds, with the use of Yvon’s theorem,
that projecting the random force onto pairs of density-fluctuation modes yields equations (22)
and (23) [3].

Equations (21), (22), and (23) constitute the basic (or idealized) version of MCT, given
as a closed set of equations. If the intermolecular potential is known, the structure factors can
be computed with well-established approximation methods (e.g. the Percus–Yevick equation)
and used to evaluate the verticesV (q, q1, q2). The equations are then solved self-consistently
for a discrete set of wavevectors (typically 100 to 400).

Before discussing MCT further, we want to emphasize two essential aspects of these
equations. First, equation (20) is identical to the generalized hydrodynamics equation (8).
However, rather than substituting an empirical function with adjustable parameters formq(t),
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a formal procedure is given by equations (22) and (23) for its computation with no free
parameters. The origin of the resulting ‘generalized damping function’ is a direct analogue
of the non-linear phonon decay process of figure 2(a) since the density-fluctuation modeφq
decays into the two-mode stateφq1φq2 via the non-linear interaction represented by the vertex
V (q, q1, q2) of equation (23).

Second, the MCT equation (20) and the method of evaluating the vertices is formally
equivalent to Kawasaki’s mode–mode-coupling theory discussed briefly in section 2. However,
there is a profound difference between the implementation and results of the two theories. In
Kawasaki’s analysis, the anomalous behaviour of modeq1 arises because one of the two other
modes with which it couples is already anomalous, and because the vertices themselves diverge
with the static susceptibility. In MCT, however, before the non-linear interactions are included,
all of the modes are regular, and finite-order perturbation theory does not produce a singularity.
The interesting new physics emerges only when the equations are solved self-consistently so
that modesq, q1, andq2 are all treated on an equal footing. AsT is varied, the structure
factors vary smoothly withq andT . The singularity in the solutions of equation (21) appears
spontaneously at some critical valueTC as a zero-frequency pole in the Fourier transform of
φq(t) for all q simultaneously. This is the central, unexpected discovery at the heart of MCT.

A numerical solution of the full MCT equations was first carried out for a system of particles
interacting via a Lennard-Jones potential by Bengtzelius [15] and has also been performed for
the hard-sphere system [16,17]. Most recently, it has been used for the Baxter model of sticky
hard spheres by Fabbianet al [18].

Numerical solutions of the MCT equations for the hard-sphere system with structure
factors calculated via the Percus–Yevick equation are shown for twoq-values in figure 3 (from
Franoschet al [16]). The different curves represent different packing fractionsφ labelled with
the indexn, whereφ = φc(1 +e) ande = ±10−n/3. The result for the critical packing fraction
φc is indicated by the dark curve labelled c. Note that forφ > φc, the correlators do not decay
to zero.

A remarkable aspect of MCT is that, in the weak-coupling limit (highT or low density),
solutions of the MCT equations (21) yield only the damped harmonic oscillator results. As
φ increases, the non-linear coupling causes the correlation functionsφ(t) to stretch out to
longer times, generating not only some non-trivial intermediate-time dynamics, but the final
α-relaxation as well. Thus, the fullχ ′′(ω) (shown in figure 7—see later), apart from the
high-frequency microscopic peak, is entirely due to the non-linear interactions. This result is
fundamentally different from the many empirical models in the literature in which theα-peak,
some ‘fast process’, and a microscopic peak are added together, each containing some free
parameters which can then be adjusted arbitrarily to fit experimental data.

Ideally, the ability of MCT to correctly describe the dynamics of supercooled liquids
approaching the glass transition could be tested directly by comparing the numerically obtained
correlation functions, or the corresponding power spectraS(q, ω) or susceptibility spectra
χ ′′q (ω) directly to experimental data. This procedure has been partially carried out, for colloids
and computer simulations, to be discussed in this Special Issue by Gotze. However, liquids
composed of atoms or simple molecules generally crystallize rather than forming glasses,
while real glass-forming materials have intermolecular potentials which are too complicated
to allow accurate evaluation of the coupling coefficients. Therefore, most experimental tests
of MCT have been carried out either by comparison with simple schematic versions of MCT,
or with particular general predictions of the theory obtained from asymptotic expansions. We
consider these general MCT predictions in the following sections. A brief description of the
asymptotic analysis is given in the appendix.
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Figure 3. Solutions to the MCT equations for a hard-sphere system at two wavevectorsq1 = 7.0
andq2 = 10.6. The unit of length is chosen such that the particle diameter is unity. The dark
curves labelled c are at the critical packing fractionφc. The other curves are labelled with an index
n whereφ = φc(1 + ε) andε = ±10−n/3. Exponential fits to then = 14 curves are shown by the
dark curves on the right. (From reference [16].)

3.2. Glass transition singularities

Thet →∞ limit of φq(t) is called the non-ergodicity parameterfq(T ). At high temperatures,
where the coupling constantsV (q, q1, q2) in equation (22) are small,φq(t) decays to zero
rapidly following the initial microscopic transient. The system is ergodic, andfq = 0. With
decreasingT , the coupling constants increase smoothly, until the glass transition singularity is
reached whereφq(t) no longer decays to zero, even for infinite time. The density fluctuations
are then partially frozen in, sinceφq(t) only decays from 1 tofq with 0< fq 6 1. The system
is then non-ergodic with the frozen-in density fluctuations producing elastic scattering. The
non-ergodicity parameterfq is equivalent to the Debye–Waller factor in crystals.

Smooth variation of the coupling constants with decreasingT (or increasing packing
fraction) leads to a critical temperatureTC at whichfq changes discontinuously from zero to
a non-zero critical valuef cq . Solving the MCT equations fort →∞ andT → TC , one finds
that, forT < TC ,

fq(T ) = f cq + h′q
√
σ (24)
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whereσ ∝ (TC − T )/TC is called the separation parameter. This square-root cusp infq(T )

is the first general prediction of MCT. Since, atT = TC , φq(t →∞) jumps discontinuously
from 0 to f cq , the dynamical singularity atTC constitutes a bifurcation. Because there are
many control parameters in the theory (all of theVq), many types of bifurcation are technically
possible. The type thought to be most relevant to the liquid–glass transition, the fold bifurcation,
is what occurs in the solution of a polynomial equation when two solutions coalesce. The results
discussed in this paper are appropriate for this case.

3.3. The two-step relaxation scenario

At high temperatures, solutions to the MCT equations have the form illustrated in figure 3 for
n = 0 or 1. The short-time microscopic transient decays to zero (with or without damped
oscillation) within a time window of about one decade. AsT decreases, the microscopic
transient is followed by decay towards a ‘plateau’, which is followed by a second decay ending
in the familiarα-relaxation process. AsT decreases further, the plateau extends to longer times
as illustrated in figure 3 for, e.g.,n = 12. This splitting off of the structural relaxation from the
initial microscopic transient produces the two-step relaxation scenario in the region between
the microscopic dynamics and theα-decay which has been observed in many experiments and
computer simulations. In MCT, this region is designated theβ-relaxation region.

The development of the intermediate two-step decay asT decreases reflects the growing
strength of the ‘cage effect’, i.e. temporary localization of a particle in the transient cage formed
by its neighbours. One can roughly view the sequence of dynamical regimes of the relaxation
process as an initial microscopic motion of each particle within its transient cage followed, in
the plateau region, by collective motion of the cage. The beginning of the decay away from
the plateau, called the von Schweidler decay, corresponds to the initial break-up of the cages
which is followed, finally, by the long-timeα-relaxation.

The plateau level forT > TC is f cq , the value ofφq(∞) at T = TC . As T approaches
TC , φq(t) remains close tof cq for increasingly longer times. Close to the bifurcation, where
(T − TC)/TC � 1, the MCT equations can be expanded in the small parameterφq(t) − f cq .
Several central MCT predictions can then be derived analytically from this asymptotic analysis.

First, one finds that

φq(t)− f cq = hqG(t). (25)

This factorization result predicts that theq-dependence ofφq(t)−f cq in this asymptotic region
is completely specified byhq (which is trivially related toh′q in equation (24)), while the time
dependence of all correlators is given by the sameq-independent functionG(t), which is called
theβ-correlator.G(t) is the solution to the equation

λG2(t) + σ = d

dt

∫ t

0
G(t − t ′)G(t ′) dt ′. (26)

Solving equation (26) forσ < 0 (liquid), one finds thatG(t) first decays to zero ast−a (the
critical decay), and then decreases as−tb (von Schweidler decay). The two exponentsa and
b are related to each other via an exponent parameterλ (1/2< λ < 1) by

λ = 02(1/a)/0(1− 2a) = 02(1 +b)/0(1 + 2b)

where0(x) is the gamma function. Equation (25) is the leading-order asymptotic result usually
employed in comparing experimental data with MCT. The exponent parameterλ is the only
material-dependent quantity, and is usually treated as an adjustable fitting parameter. For the
hard-sphere system,λ was calculated with the Percus–Yevick approximation to beλ = 0.74.
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The solutions of equation (26) have different forms forσ < 0 (liquid) andσ > 0 (glass),
as discussed below in section 3.4. Forσ = 0 (i.e.T = TC), equation (26) is solved by

G(t)σ=0 = (t0/t)a (27)

wheret0 is a microscopic timescale of the order of 10−12 s for molecular liquids, determined
by matching equation (25) to the microscopic transient. Thus, atT = TC , the t−a critical
decay extends tot = ∞.

Figure 4. Comparison of the MCT solution forφq(t) (solid curve) with the asymptoticβ-relaxation
approximation (dashed curve) (equations (25) and (26)).The dotted curves show the two power laws.
(From reference [4].)

Note thatφq(t) given by equations (25) and (26) matches the full solution of the MCT
equations only in the asymptotic region close toφq(t) = f cq as shown in figure 4. This
asymptotic beta-correlator solution lacks both the short-time microscopic structure and the
long-time α-relaxation structure which are, however, present in the full MCT solutions.
Furthermore, the domain of validity of these leading-order asymptotic solutions cannot be
establisheda priori. Recently, this domain-of-validity question has been addressed by
Franoschet al [16] and Fuchset al [19] who compared numerical solutions for the hard-sphere
system with MCT fits using both leading-order and leading-order plus next-to-leading-order
MCT solutions.

3.4. The two scaling regimes

Solutions to the MCT equations, such as those for hard spheres shown in figure 3, can be
replotted in scaled form as shown in figure 5. In (a), the full solutions are shown; in (b),
the scaling brings theβ-relaxation regions into coincidence; in (c), the scaling brings theα-
relaxation regions, including the von Schweidler decay, into coincidence. These plots illustrate
the scaling regions of the MCT equations that can be found analytically from the asymptotic
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Figure 5. MCT solutions for the hard-sphere system forq = 10.6; (a) for unscaled time, as in
figure 3; (b) with time scaled tot/tσ ; (c) with time scaled tot/t ′σ . The indexn defines the packing
fraction by(φ − φc)/φc = ±10−n/3. The solid circles and squares in (a) indicate the timestσ and
t ′σ respectively forn = 5 and 9. The dashed curve in (b) is the master functiong−(t̂). The full
curves show the rescaled correlators8̂(t̂ ) = (φq(t/tσ ) − f cq )/hq

√|σ |. The open symbols mark
the positions where the correlators deviate from the master function by 20%. The heavy curve in
(c) is the master functionFα and the open symbols mark the positions whereφq andF differ by
20%. (Courtesy of M Mayr.)
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solutions. They also illustrate that the scaling region increases rapidly with increasingn, i.e. as
the packing fractionφ approachesφc, or T approachesTC . Let us consider the two scaling
laws in detail.

3.4.1. The first (β-) scaling regime. Theβ-correlatorG(t), defined by equation (26) for any
selected value ofλ, can be shown analytically to obey the scaling laws

G(t)σ<0 =
√
|σ |g−(t/tσ ) (28a)

G(t)σ>0 =
√
|σ |g+(t/tσ ) (28b)

where the scaling timetσ is given by

tσ = t0/|σ |1/2a. (29)

The master functionsg±(t/tσ ) are solutions to equation (26) withσ = ±1. Master functions
g±(t̂ ) for λ = 0.735, where the scaled timêt = t/tσ , are illustrated in figure 6(a). For short
times (t � tσ ), both master functions follow the critical decay lawg± = t̂−a. For longer times
(t � tσ ), the liquid master functiong−(t̂ ) follows the von Schweidler lawg−(t̂ ) = −Bt̂b
while the glass master functiong+(t̂ ) has the constant value 1/

√
1− λ. (When leading-order

Figure 6. (a) Master functionsg+(t̂) andg−(t̂) for λ = 0.735. The dashed curve shows the von
Schweidler decay. The solid curve marked c is the critical correlatort̂−a . (b) Susceptibility master
functionsχ̂(ω̂) for λ = 0.735 illustrating the minimum and the knee. The solid curve marked c
corresponds to the critical point whereχ ′′(ω) ∝ ωa . (From reference [16].)
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corrections to the asymptotic scaling laws are included, these two power-law regimes are
described bŷt−a(1 +pt̂−a) and−Bt̂b(1 +

√|σ |p′ t̂ b) [16].)
From the correlation functionsφq(t), the power spectrumS(q, ω) is found by Fourier

transformation, and the susceptibility spectrumχ ′′(ω) follows by multiplyingS(q, ω) by ω.
The scaling laws forφq(t) also imply scaling laws for the susceptibility spectra as indicated
in figure 7. Theχ ′′(ω) spectra in theβ-relaxation region should scale as

χ ′′±(ω) = hq
√
|σ |χ̂±(ωtσ ). (30)

The susceptibility master functionŝχ± for λ = 0.735 are shown in figure 6(b). ForT > TC ,
the form of the MCTχ ′′−(ω) function in the vicinity of the minimum is given approximately
by the interpolation equation:

χ ′′−(ω) = χ ′′min

[
b

(
ω

ωmin

)a
+ a

(
ωmin

ω

)b] 1

a + b
(31)

(ωmin is proportional toωσ = 1/tσ ).
For bothT < TC and T > TC , χ ′′(ω) should exhibit a critical-decay region ofωa

power-law behaviour for frequencies above the minimum but below the region of microscopic
dynamics:

χ ′′±(ω) ∝ ωa (ωσ � ω � �q). (32)

(Note that if the region of microscopic dynamics is not sufficiently far away fromωmin, this
critical decay region may be difficult to observe, and fits of experimental data to equation (32)
can produce someaeff which is unrelated to the critical exponenta.) Forω < ωσ , the two
χ̂ ′′(ω) master curves are different. ForT > TC , the von Schweidler power-law behaviour is
predicted:

χ ′′−(ω) ∝ ω−b (ωα � ω � ωσ ) (33)

whereωα = 1/τ (τ is the second scaling time discussed in the following section). ForT < TC ,
a linear regime is predicted:

χ ′′+ (ω) ∝ ω (0< ω � ωσ ). (34)

For T > TC , the two power-law regionsω−b andωa are separated by the susceptibility
minimum atωmin. For T < TC , the two power-law regionsω1 andωa should produce a
slope change appearing as a downward-concave feature—the ‘knee’ (see figure 6(b)). We
note that the existence of a ‘knee’ is not a unique feature of MCT. Any model forφ(t) at
low temperatures (such as equation (1)) which includes fast-relaxation dynamics followed
at a much longer time by the finalα-relaxation can produce such a feature. The non-trivial
MCT predictions concern the form and scaling properties of both the knee and the minimum.
The knee, however, is strongly affected by activated hopping processes not included in this
idealized version of MCT. We will discuss these effects further in the next section.

As T approachesTC , the range of frequencies for whichχ ′′(ω) follows the scaling law
(equation (30)) increases, as can be seen in figure 7(b). Therefore, in using MCT to analyse
experimental data, the fitting range must be chosen so as not to exceed the scaling range. This
point was discussed in detail by W Götze in his talk mentioned earlier.

3.4.2. The second (α-) scaling regime. As seen in figures 5(c) and 7(c), solutions to
the MCT equations can also be scaled so that theα-decay regions ofφq(t) or χ ′′−(ω) for
different temperatures overlap. Thisα-scaling is the MCT equivalent of the conventional
time–temperature superposition principle which asserts that relaxation spectra at different
temperatures can be superimposed by scaling the time ast/τ whereτ is theα-relaxation time.
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Figure 7. χ ′′(ω) spectra for the hard-sphere system atq = 10.6 as in figure 5; (a) the unscaled
frequency; (b)ω scaled toω/ωσ ; (c)ω scaled toω/ωσ ′ = ωt ′σ . (Courtesy of M Mayr.)

The long-time asymptotic analysis of the MCT equations forσ < 0 and(T −TC)/TC � 1
leads to the scaling relation

φq(t) = Fαq (t/τ ) (t � tσ ). (35)

The master functionFαq is independent ofT . It is determined by the vertices in equation (23)
evaluated forT = TC . In contrast to that in theβ-relaxation region,φq(t) in thisα-relaxation
region has no universal form. Numerical solutions of the MCT equations show that theα-
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relaxation can be described, to a good approximation, by the Kohlrausch stretched-exponential
function

φq(t) = f cq exp[−(t/τq)βq ]. (36)

However, bothτq andβq are found to beq-dependent in solutions of the MCT equations,
a result also confirmed by computer simulations and neutron scattering experiments. Since
the von Schweidler exponentb is independent ofq, there cannot be any simple relation, in
general, betweenb andβ. An exception occurs forq → ∞ where Fuchs has shown that
equation (36) is exact, withβ(q → ∞) = b [20]. Note that theα-scaling (equation (35)) is
an asymptotic result for(T − TC)/TC � 1, and its domain of validity is not known. From
reference [16], however, it is known that the range of validity of the asymptoticα-relaxation
results is much larger than that of theβ-relaxation results, accounting for the general validity of
time–temperature superposition forα-relaxation. For temperatures far aboveTC , β may either
increase or decrease with increasingT without violating the asymptotic MCT predictions.

Finally, we consider the temperature dependence predicted by MCT for theα-relaxation
time τ . From equations (25) and(28a), and the form ofg−(t/tσ ) = −B(t/tσ )b in the von
Schweidler regime, one has

φ(b)q (t)− f cq ∝
√
|σ |
(
t

tσ

)b
. (37)

But √
|σ |
(
t

tσ

)b
= |σ |1/2

(
t

t0
|σ |1/2a

)b
=
(
t

t0
|σ |1/2a|σ |1/2b

)b
(38)

so the von Schweidler decay region must move to longer times asT decreases following

t ′σ = B−1/bt0/|σ |γ (39a)

with

γ = 1

2a
+

1

2b
. (39b)

(B is a number of order unity determined byλ.) Since theα-relaxation must smoothly continue
the von Schweidler decay, MCT predicts that theα-relaxation timeτ has the same temperature
dependence ast ′σ :

τ(T ) = τ0(T − TC)−γ (T > TC). (40)

Plots of (1/τ)1/γ versusT exhibit linear behaviour as predicted by equation (40) over
considerable temperature ranges, extrapolating to zero at aTC that is generally compatible
with theTC deduced from theβ-relaxation analysis. However, on approachingTC , plots of
experimental(1/τ)1/γ data generally deviate from the linear extrapolation, exhibiting upward
curvature. This observation indicates that, in structural glasses, the complete structural arrest
atTC predicted by the idealized MCT does not occur.

3.5. Extended MCT

The ideal glass transition predicted by the idealized MCT is not observed in real glass-forming
materials (with the possible exception of colloidal glasses). Instead,φq(t) always relaxes from
the plateau to zero after a sufficiently long time. Non-ergodicity is therefore only observed
on timescales short compared to the final relaxation time. At very low temperatures, however,
the final relaxation becomes glacial, unobservable on any practical experimental timescale.
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Figure 8. Correlation functionsφ(t) (this page) and susceptibility spectraχ ′′(ω) (facing page) for
a schematic model of the idealized MCT (a) and the corresponding extended model (b). Curves
A–G are forT > TC while curves F′–B′ are forT < TC . (From reference [23].)

The singularity atTC predicted by MCT results from restricting the memory kernel
(equation (22)) to the dominant terms which are pairs of density-fluctuation modes. In the next-
to-leading-order terms inmq(t), current modes occur, as first shown by Das and Mazenko [21]
and by G̈otze and Sj̈ogren [22,23]. When these terms are included, equation (26) forG(t) is
replaced by

λG2 + σ − δt = d

dt

∫ t

0
G(t − t ′)G(t ′) dt ′ (41)

which differs from equation (26) only by the term−δt . This term is an approximation for
the complete effect of the current terms which resembles phonon-assisted activated hopping
processes in crystals. Even if the hopping parameterδ is small, the term−δt will always
dominate at sufficiently long times, causingG(t) to eventually fall below zero, initiating the
α-decay.

Figure 8 shows the correlation functionsφq(t) (left) and the corresponding susceptibility
spectraχ ′′(ω) (right) computed for a schematic MCT model for the idealized (δ = 0, top)
and extended (bottom) versions. In this model, only one correlatorφ is considered, and the
right-hand side of equation (22) is replaced by a polynomialv1φ(t) + v2φ

2(t). Note that the
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Figure 8. (Continued)

α-peak inχ ′′(ω) disappears atTC for the idealized MCT but is present at all temperatures for
the extended MCT.

The χ ′′(ω) spectra forT > TC are changed somewhat by hopping effects, especially
at low frequencies where the long-time properties ofφq(t) are most important. BelowTC
however, as the dominant dynamics crosses over from cage-effect hydrodynamics to activated
transport, the spectra are strongly modified. The ‘knee’ in figure 6(b) can be modified or
eliminated [24], and the cusp infq(T ) (equation (24)) can be broadened. We recall that the
knee is a consequence of the crossover from the critical decay to the horizontal plateau inφ(t)

versust . If another decay process (such as activated hopping) causesφ(t) to decay before
the plateau is fully developed, the knee will be absent. This appears to be the case for most
glass-forming materials, although not for colloidal glasses. Figure 9 illustrates the evolution
of the susceptibility spectrum with decreasingT when hopping is included. Note that the
minimum persists, even at the lowest temperatures.

In the original (idealized) version of MCT,TC is a critical temperature at which complete
structural arrest occurs. In the extended version, the singularity is avoided, andTC represents
a crossover temperature between the high-temperature regime dominated by liquid-like cage
effects, and the low-temperature regime dominated by solid-like activated hopping processes.
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Figure 9. Susceptibility spectraχ ′′(ω) for temperatures decreasing from curve 1 to curve 9 with
hopping included, illustrating the persistence of the minimum atT < TC . Curves 1–3 correspond
to T > TC , curve 4 toT = TC , and curves 5–9 toT < TC . (From reference [24].)

The extended version of MCT represented by equation (41) is a first approximation. A complete
MCT description of the dynamics forT < TC has not yet been formulated.

4. Summary and conclusions

The idealized MCT equations are currently being extended by several groups to include more
realistic intermolecular potentials as well as orientational effects. These extensions should
eventually permit more complete comparison of experimental data with full MCT predictions
rather than with just the results of asymptotic expansions. So far, however, almost all tests of
MCT have been carried out using the MCT asymptotic predictions discussed in the preceding
sections. These tests, discussed in detail by W Götze, include:

(1) The cusp infq(T ) atTC (equation (24)).
(2) The power-law critical decay ofφq(t) towards the plateau.
(3) The von Schweidler power-law decay ofφq(t) away from the plateau.
(4) Scaling of correlation functions and susceptibility spectra in theβ-relaxation region

and the temperature dependence of the scaling timetσ (equations (28) and (29)).
(5) The factorization property (q-independent time dependence) in theβ-relaxation regime

(equation (25)).
(6) Scaling of theα-relaxation and temperature dependence of the second scaling timeτ

(equations (35) and (39)).
(7) The evolution with temperature ofφq(t) andχ ′′q (ω).

Comparison of experimental data with these predictions is a subtle procedure and the
results are not always clear cut. Nevertheless, a growing body of experimental data and
computer simulation results indicate that the essential features of the dynamics of liquids
approaching the liquid–glass transition is correctly contained in the MCT description, at least
for temperatures aboveTC . Elaboration of the theory forT < TC remains to be pursued in the
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future.
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Appendix. Elements of the MCT asymptoticβ-relaxation analysis

This appendix is based on references [25] and [1].
For the following discussion, we consider a schematic MCT model with a single correlator

φ(t). The equation of motion and the memory function are given by

φ̈(t) +�2φ(t) +
∫ t

0
M(t − t ′)φ̇(t ′) dt ′ = 0 (A.1)

M(t) = γ δ(t) +�2m(t) (A.2)

m(t) = F [φ(t)] = v1φ(t) + v2φ
2(t) + · · · (A.3)

wherev1 andv2 are smoothly decreasing functions of temperature or increasing functions of
density.

Laplace transformation of equation (A.1) with the Laplace transform convention

L[φ(t)] = i
∫ ∞

0
eiztφ(t) dt = φ(z)

yields

φ(z) = −1

z− �2

z + γ +�2m(z)

. (A.4)

As T → TC from above (orρ → ρC from below), solutions to the MCT equations
extend to longer and longer times (see figure 3), exhibiting a plateau at a level 0< f c < 1,
with the result thatφ(z = 0), which is the integral ofφ(t), diverges. Therefore, for small
z, φ(z) and, via equation (A.3),m(z) as well become very large. In the second term in the
denominator of equation (A.4),z andγ can then be ignored in comparison to�2m(z). In this
limit, equation (A.4) becomes

φ(z) = −1

z− 1

m(z)

. (A.5)

Inverse Laplace transformation of equation (A.5) gives∫ t

0
m(t − t ′)φ(t ′) dt ′ =

∫ t

0
[m(t ′)− φ(t ′)] dt ′. (A.6)

Equation (A.6) applies for the liquid close toTC and also for the glass, and is the starting point
for the asymptotic analysis. Thet →∞ limit of φ(t) is the non-ergodicity parameterf . For
ρ < ρC , f = 0; for ρ = ρC , f = f c; for ρ > ρC , f > f c.
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We next letφ(t) = f + (1− f )G(t) andρ = ρC(1 + ε) and carry out a power series
expansion of equation (A.6) using bothε andG(t) as small parameters. Since this analysis is
for φ(t) close to the plateau, it applies—by definition—only to theβ-relaxation region.

For the zeroth-order approximation, letφ(t) = f andF [φ] = F(f ). Then equation (A.6)
becomes

F(f )f t = [F(f )− f ]t → F(f )(1− f ) = f (A.7)

so

F(f ) = f

1− f . (A.8)

Equation (A.8) determines the non-ergodicity parameterf .
Consider, for example, the simplest schematic model, theF2- (Leutheusser) model:

m(t) = F [φ(t)] = V φ2(t) (A.9)

f

1− f = Vf
2→ f = V ±√V 2 − 4V

2V
or f = 0. (A.10)

For V < 4, the only real solution to equation (A.10) isf = 0. ForV = 4, a second real
solution appears:

f (V = 4) = f c = 1

2
(A.11)

which locates the bifurcation atVC = 4. ForV > 4,

f = 1

2
± 1

4

√
V − VC (A.12)

for which only the upper (+) solution is physical. Assuming that V increases linearly withρ

(or decreases linearly withT ) then gives the square-root cusp result of equation (24) in the
main text.

Next,F [φ(t)] is expanded in bothG andε for f = f c:

F [φ(t)] = Fc[f c] +

[
∂F c

∂ρ

]
ρCε +

[
∂F c

∂f

]
(1− f c)G +

1

2

[
∂2Fc

∂f 2

]
(1− f c)G2 + · · · (A.13)

where the derivatives are evaluated atε = 0 andφ(t) = f c. The zeroth-order term in the
resulting expansion of equation (A.6) is equation (A.8) for the critical point. The first-order
term vanishes, and this is the condition for the critical point. The second-order term gives∫ t

0
[λG2(t ′) + σ ] dt ′ =

∫ t

0
G(t − t ′)G(t ′) dt ′ (A.14)

with σ ∝ ε andλ = 1
2(∂

2F/∂f 2)(1 − f c)3. Equation (A.14) gives equation (26) in the
main text which defines the beta-correlatorG(t). At ρ = ρC (or T = TC), σ = 0, and
equation (A.14) becomes

λ

∫ t

0
G2(t ′) dt ′ =

∫ t

0
G(t − t ′)G(t ′) dt ′. (A.15)

Consider a power-law trial solution for equation (A.15):

G(t) = γ tx (A.16)

with which equation (A.15) is

γ 2λ

∫ t

0
(t ′)2x dt ′ = γ 2

∫ t

0
(t − t ′)x(t ′)x dt ′. (A.17)
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For equation (A.17) to be satisfied,λ andx must be related by

λ = 02(1 +x)

0(1 + 2x)
(A.18)

where0(x) is the gamma function.
There are two solutions to equation (A.18) for 1/26 λ 6 1: x = b with 0< b < 1, and

x = −a with 0< a 6 0.395. This is the origin of the critical decay law (equation (27) in the
main text) and of the gamma-function relation between the critical exponentsa andb of MCT.
The derivation of equation (A.14) can be generalized to the full MCT equations, but the proof
and resulting formulae forσ andλ are somewhat more complicated [3].
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